Gene modification in embryonic stem cells by single-stranded DNA oligonucleotides.
نویسندگان
چکیده
Oligonucleotide-mediated gene targeting is an attractive alternative to current procedures to subtly modify the genome of mouse embryonic stem (ES) cells. However, oligonucleotide-directed substitution, insertion or deletion of a single or a few nucleotides was hampered by DNA mismatch repair (MMR). We have developed strategies to circumvent this problem based on findings that the central MMR protein MSH2 acts in two different mismatch recognition complexes: MSH2/MSH6, which mainly recognizes base substitutions; and MSH2/MSH3, which has more affinity for larger loops. We found that oligonucleotide-mediated base substitution could effectively be obtained upon transient suppression of MSH2 protein level, while base insertions were effective in ES cells deficient for MSH3. This method allows substitution of any codon of interest in the genome.
منابع مشابه
LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells.
Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enable...
متن کاملSubtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage
Gene targeting by single-stranded oligodeoxyribonucleotides (ssODNs) is a promising tool for site-specific gene modification in mouse embryonic stem cells (ESCs). We have developed an ESC line carrying a mutant EGFP reporter gene to monitor gene correction events shortly after exposure to ssODNs. We used this system to compare the appearance and fate of cells corrected by sense or anti-sense ss...
متن کاملTransient suppression of MLH1 allows effective single-nucleotide substitution by single-stranded DNA oligonucleotides.
Short synthetic single-stranded oligodeoxyribonucleotides (ssODNs) can be used to introduce subtle modifications into the genome of mouse embryonic stem cells (ESCs). We have previously shown that effective application of ssODN-mediated gene targeting in ESC requires (transient) suppression of DNA mismatch repair (MMR). However, whereas transient down-regulation of the mismatch recognition prot...
متن کاملGeneration of a mouse mutant by oligonucleotide-mediated gene modification in ES cells
Oligonucleotide-mediated gene targeting is emerging as a powerful tool for the introduction of subtle gene modifications in mouse embryonic stem (ES) cells and the generation of mutant mice. However, its efficacy is strongly suppressed by DNA mismatch repair (MMR). Here we report a simple and rapid procedure for the generation of mouse mutants using transient down regulation of the central MMR ...
متن کاملThe involvement of replication in single stranded oligonucleotide-mediated gene repair
Targeted gene repair mediated by single-stranded oligonucleotides (SSOs) has great potential for use in functional genomic studies and gene therapy. Genetic changes have been created using this approach in a number of prokaryotic and eukaryotic systems, including mouse embryonic stem cells. However, the underlying mechanisms remain to be fully established. In one of the current models, the 'ann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 530 شماره
صفحات -
تاریخ انتشار 2009